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Abstract 
 
We present a software framework for simulating the 

HCF Controlled Channel Access (HCCA) in an IEEE 
802.11e system. The proposed approach allows for flexi-
ble integration of different scheduling algorithms with the 
MAC. The 802.11e system consists of three modules: 
Classifier, HCCA Scheduler, MAC. We define a commu-
nication interface exported by the MAC module to the 
HCCA Scheduler. A Scheduler module implementing the 
reference scheduler defined in the draft IEEE 802.11e 
document is also described. The software framework re-
ported in this paper has been implemented using the Net-
work Simulator 2 platform. A preliminary performance 
analysis of the reference scheduler is also reported. 

1. Introduction 

In recent years Wireless Local Area Networks have 
become very popular due to the increasing interest of 
residential and office customers in ubiquitous services. 
The IEEE 802.11 protocol [1] has established as the 
world-wide standard in wireless indoor and outdoor 
LANs. On the other hand, the high level of performance 
provided by the wired networks is driving the users to-
ward an emerging set of applications with Quality of Ser-
vice requirements, such as phone or videoconference over 
IP networks. In order to support applications with QoS 
requirements the upcoming IEEE 802.11e amendment [2] 
provides the IEEE 802.11 MAC with two additional ac-
cess mechanisms: Enhanced Distributed Channel Access 
(EDCA), with distributed control which enables priori-
tized channel access, and HCF Coordination Channel 
Access (HCCA), which instead requires centralized 
scheduling, and allows the applications to negotiate pa-
rameterized service guarantees. The interested reader may 
refer to [3] for a full description of the 802.11e enhance-
ments to support QoS. In this paper, we present a soft-
ware framework for simulating HCCA. The proposed 
framework models the 802.11e system by means of three 
different modules, namely Classifier, HCCA Scheduler, 
MAC. The MAC module exports an interface to the 
HCCA Scheduler module. Thus, different scheduling al-
gorithms can be easily integrated. As an example, we 

implemented the reference scheduler defined in the 
802.11e draft specification [2]. The above software 
framework has been implemented using the Network 
Simulator 2 (ns2, [4]). A preliminary performance as-
sessment of the reference scheduler is also reported, 
showing the isolation provided to delay-sensitive flows in 
the case of heavy-loaded system. 

The rest of the paper is organized as follows. In Section 
2 we describe the HCCA access function specified in [2]. 
Section 3 contains the main contribution of this paper, 
which is the software framework for simulating the 802.11e 
HCCA. In order to validate the framework that has been 
devised in Section 2, in Section 4 we discuss some prelimi-
nary results that have been obtained with a sample scenario. 
Finally, we draw conclusions in Section 5. 

2. HCF Controlled Channel Access Descrip-
tion 

The HCCA is a centralized access mechanism con-
trolled by the Hybrid Coordinator (HC), which resides 
into the QoS-enabled Access Point (QAP). Each QoS-
enabled station (QSTA) may have up to eight established 
Traffic Streams (TS); a TS is characterized by a Traffic 
Specification (TSPEC) which is negotiated between the 
QSTA and the QAP. Mandatory fields of the TSPEC in-
clude: Mean Data Rate, Delay Bound, Nominal SDU 
Size. For all established streams the QAP is required to 
provide a service that is compliant with the negotiated 
TSPEC under controlled operating conditions. 802.11e 
compliant stations must be able to process the additional 
frames reported in Table 1. 

 
QoS frames QoS piggybacked frames 
QoS Data QoS Data + CF-Ack 
QoS CF-Ack QoS Data + CF-Poll 
QoS Null QoS Null + CF-Ack 
QoS CF-Poll QoS Data + CF-Poll + CF-

Ack 
 

Table 1. QoS frames 

The QAP enforces the negotiated QoS guarantees by 
scheduling Controlled Access Phases (CAPs). A CAP is a 
time interval during which the QAP may either transmit 



MSDUs of established downlink TSs or poll one or more 
QSTAs by specifying the maximum duration of the trans-
mission opportunity (TXOP): a QSTA is never allowed to 
exceed the TXOP limit imposed by the QAP, including 
interframe spaces and acknowledgments. If the traffic 
stream of a polled QSTA is not backlogged, then the 
QSTA responds with a Null frame. Fig. 1 shows a sample 
CAP during which the QAP transmits two frames and 
polls the QSTA, which in turn transmits two frames. It is 
worth noting that the scheduling of CAPs, i.e. of HCCA 
traffic streams, also affects the overall capacity left to 
contention-based traffic, i.e. EDCA and DCF.  
• The 802.11e provides three acknowledgment modes: 

direct acknowledgment: each Data frame is acknowl-
edged by the recipient station immediately after it has 
been correctly received. The recipient station may pig-
gyback the acknowledgment to an outgoing frame di-
rected to the sending station in order to reduce the 
MAC overhead (see new frame types in Table 1). A 
further optimization consists in using of the QAck op-
tional feature. If both the QAP and the sending QSTA 
are QAck-enabled, then the QAP may piggyback an 
acknowledgment into a frame directed to a different 
QSTA than the sending one 

• no acknowledgment: data frames are never acknowl-
edged by the recipient station 

• block acknowledgment: several acknowledgments are 
aggregated into one frame.  The 802.11e does not 
specify a standard procedure that the sending station 
should apply when fragmenting and concatenating the 
MSDUs in a burst of frames. Since, to the best of our 
knowledge, there is no previous work on this particular 
issue, we leave this optional mode for future investiga-
tion.  

 
Fig. 1. Example of HCCA frame exchange se-

quence  

The IEEE 802.11e standard does not define a manda-
tory HCCA scheduling algorithm; however, a reference 
scheduler is specified and reported therein for informa-
tional purposes. The reference scheduler requires that 
flows specify the following TSPEC parameters: Mean 
Data Rate, Nominal SDU Size, Maximum SDU Size and 
Maximum Service Interval (MSI). The MSI of a given 
flow is the maximum time that elapses from the start of 
two subsequent service periods to that flow. The refer-
ence scheduler produces TDM-like schedules: each TS is 
periodically allocated a fixed amount of capacity. The 
period is called Service Interval (SI) and it is the same for 

all traffic streams. It is computed as the smallest admitted 
MSI. The TXOP duration is then set to the time required 
to transmit the packets of Nominal SDU Size that arrive 
at the negotiated Mean Data Rate during the SI; the 
TXOP is rounded up to contain an integer number of 
Nominal SDU Size. In order to avoid head of line block-
ing, the actual TXOP value is the maximum between the 
value obtained with the above procedure and the time to 
transmit a packet with Maximum SDU Size. A sample 
schedule showing three admitted flows (i, j and k) is re-
ported in Fig. 2. 

TXOP
i

TXOP
j

TXOP
k

TXOP
i

TXOP
j

TXOP
k

EDCA
DCF

SI

HCCA  
Fig. 2. Sample schedule with the reference scheduler 

3. Software Architecture 

The simulation framework is shown in Fig. 3 and con-
sists of the following modules: Classifier, MAC, HCCA 
Scheduler. These are described later in this section and 
are functional to the simulation of 802.11e HCCA. 

The Link Layer and Measurement modules are exter-
nal to the 802.11e and depend on the simulation environ-
ment where the proposed framework is implemented. The 
former module is required to connect the MAC to upper 
layers. Performance is evaluated through the use of the 
Measurement module. 

 
Fig. 3. Software modules 

3.1. Classifier Module 

The function of the Classifier module is to appropri-
ately tag packets that belong to established traffic streams 
with a Traffic Identifier (TID). Only packets from the 
Link Layer to the MAC are tagged, because uplink pack-
ets are just passed to upper layers without any schedul-
ing/differentiation treatment. 



Each station runs a separate instance of the Classifier 
module, which may be further specialized in the follow-
ing two types: 
• Classifier for a QSTA: the tagging policy is based on a 

terminal-specific set of rules  
• Classifier for the QAP: the tagging policy is based on 

the above set of rules and on the identifier of the desti-
nation QSTA  

The MAC and HCCA Scheduler modules are able to re-
trieve the TID of any packet. 

3.2. MAC module 

In this subsection, we describe the main data struc-
tures, functions and events of the MAC module. 

There are three piggybacking policies, which may be 
set on a per-station basis: 
• no piggybacking: the only frames used are those listed 

in the left column of Table 1 under “QoS frames” 
• piggybacking on: the MAC piggybacks an acknowl-

edgment on outgoing Data frames directed to the same 
station only 

• QAck: the optional QAck feature is turned on. There-
fore, the piggybacking is used whenever it is possible. 
We devised the following set of events that drive the 

MAC state machine: 
• HCCA_HAS_CONTROL. This event notifies the station 

that it has control of the medium. A QSTA generates 
this event when it is polled from the QAP. The QAP 
generates this event when it senses the medium idle for 
a period larger than PIFS or when it receives the last 
frame from a QSTA during a TXOP burst. 

• HCCA_LOST_CONTROL. This event notifies the sta-
tion that it has not the control of the medium anymore. 
It is generated when the HCCA Scheduler does have 
any packets to send. Also, the QAP generates this 
event when a QSTA correctly responds to a polling 
frame and a QSTA generates this event when the QAP 

correctly acknowledges the last frame of the TXOP 
burst. 

• HCCA_DATA_RECV. This event notifies the station 
that a frame carrying data addressed to this station has 
been correctly received. 

• HCCA_RECV. This event notifies the station that a 
frame of any type (acknowledgment, Data and poll 
frames) addressed to this station has been correctly re-
ceived. 

• HCCA_SUCCESS. This event notifies the station that a 
downlink Data frame has been correctly acknowledged 
by the receiving station. 

• HCCA_TRANSMIT. This event notifies the station that 
a downlink frame has been dispatched. 

• HCCA_TX_END. This event is generated by the QAP 
when the TXOP granted to a QSTA expires 

• HCCA_CAP_HAND. This event is generated by the 
QAP when it is time to start a new CAP, according to 
the HCCA Scheduler requirements. 
Fig. 4 shows the above events in a sample frame ex-

change sequence: the transmission of two uplink Data 
frames, followed by the transmission of a downlink Data 
frame, assuming that neither collision nor frame corrup-
tion due to bad channel state occur. 

In Fig. 5 the finite state machines of the QAP and 
QSTA MAC modules are depicted. After the initialization 
of the HCCA subsystem (HCCA_START event), a station 
alternates between two main states (HAS_CONTROL 
and LOST_CONTROL, shown in more detail in Fig. 6 
and Fig. 7). The only difference between the QAP and the 
QSTA is that the former may access the medium at any 
moment, provided that ongoing frame exchanges are not 
interrupted. Instead, the only way for a QSTA to access 
the medium using HCCA is responding to a poll from the 
QAP. The MAC is notified by the HCCA Scheduler of the 
start time of the next CAP and uses a dedicated timer 
(mhCap_) to this purpose. 

 
 

 
Fig. 4. Events during a sample frame exchange sequence 



 
Fig. 5. State chart of the QAP and QSTA MAC modules 

 
Fig. 6. State chart of the MAC module (HAS_CONTROL case) 

 
When the HAS_CONTROL block is entered (Fig. 6) 

the station waits for the medium to become idle. Then the 
MAC requests the head-of-line packet to the HCCA 
Scheduler. If the HCCA is currently unbacklogged, then 
the station immediately loses the control of the medium. 
Otherwise, the frame is sent to the physical layer. If there 
is a pending acknowledgment the station may piggyback 
it to the outgoing frame, provided it is allowed by the 
sending and receiving capabilities. The outgoing frame 
may or may not require an explicit acknowledgment. In 
the first case, the cycle restarts immediately. In the sec-
ond case, the station waits for the acknowledgment after 
transmitting the frame, and: 

• if an acknowledgment is correctly received after a 
SIFS the station returns to its initial state 

• if the station is the QAP and the medium is idle for a 
period greater than or equal to PIFS, then it claims the 
control of the medium, so that contention-based traffic 
cannot use time slots reserved to HCCA during a re-
covery phase 

• if the station is the QAP and there is a response to the 
last poll frame, then the station loses the control of the 
medium 

• finally, if the station is a QSTA and the last frame in 
the current TXOP burst has been acknowledged, then 
the station loses the control of the medium 



 
Fig. 7.  State chart of the MAC module (LOST_CONTROL case) 
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Fig. 8. State chart of the QAP and QSTA HCCA Scheduler modules 

 
When the LOST_CONTROL block (Fig. 7) is entered 

the station continuously listens to the medium. Four 
events may occur: 
• an acknowledgment to a previously transmitted Data 

frame is received. In this case the station immediately 
returns to the initial state 

• a Data frame that requires direct acknowledgment is 
received, in which case the acknowledgement is trans-
mitted after a SIFS duration 

• if the station is a QSTA it may receive a poll frame 
from the QAP. In this case the station enters the 
HCCA_HAS_CONTROL block 

• finally, if the station is the QAP it may receive the last 
frame of a TXOP burst. In this case the station enters 
the HCCA_HAS_CONTROL block. 

3.3. HCCA Scheduler Module 

The main component of the HCCA simulator architec-
ture is the HCCA Scheduler module. Unlike those operat-
ing at the network layer, schedulers operating at the MAC 
layer heavily depend on the underlying layer-2 and physi-
cal layers. Thus, we have defined an interface which is 
general enough to adapt any sort of scheduling algorithm 
to the specified framework. The interface is shown in Fig. 



8, which reports the block diagrams of the QAP and 
QSTA HCCA Scheduler modules. 

When in active state (i.e., when the user turns the 
simulation of HCCA on) both the QAP and the QSTA 
schedules alternates between two main states: 
• IDLE. This is a passive state: enqueued packets from 

downlink TSs are not transmitted using HCCA and no 
polls are generated (QAP only). The only actions al-
lowed in the current state are: (i) enqueue a new 
downlink packet of an established TS (ii) add a new 
TS to the set of established TSs 

• BUSY. This is an active state. All the allowed action in 
the previous state may take place in the current one. 
Moreover, downlink packets that belong to established 
TSs may be transmitted or the QAP may poll QSTAs 
with established TSs. Note that the QSTAs reach this 
state only on receipt of a poll from the QAP, whereas 
the QAP itself is always in this state except during the 
transmission opportunities that it granted to the 
QSTAs. 
The following functions are specific to the scheduling 

algorithm that is used at the QAP and QSTAs: 
• enque(). This function is called by the Link Layer 

whenever a new downlink packet has been received 
from upper layers. The incoming packet should be en-
queued in the scheduler-specific data structures of the 
HCCA Scheduler module. There are cases in which the 
scheduler may drop packets, for example if the buffer 
allocated to downlink packets is finite or according to 
time-to-live packet policies. 

• deque(). This function is called by the MAC when 
the station has the control of the medium. Its effects 
depend on the scheduling algorithm and the current 
status of the scheduler. The allowed actions include: (i) 
the scheduler passes to the MAC a downlink packet to 
be transmitted (ii) the scheduler communicates to the 
MAC that a given QSTA should be polled with a 
specified TXOP duration (iii) a poll to itself should be 
sent (iv) no action is to performed. Of course, actions 
(ii) and (iii) are only performed by the QAP scheduler. 

• get_next_cap(). [QAP only] This function is 
called by the MAC when the QAP scheduler loses the 
control of the medium. It is used by the scheduler to 
notify the MAC of the start of the next CAP. Until that 
time, the HCCA function of the QAP is idle. 

• addTSPEC(). [QAP only] This function is called by 
the MAC when the admission of a new traffic stream is 
requested 

• get_queue_size(). [QSTA only] This function is 
called by the MAC before transmitting a Data frame. It 
returns the queue size of a specified TS. This informa-
tion is piggybacked to all Data frames generated by a 
QSTA that belong to an established TS. 
Since the scheduler procedure may require some status 

information, we made available the full set of events de-

scribed in the previous section to the HCCA Scheduler 
module. However, it is quite unlikely that any scheduler 
will require all event types. Thus, we allow a scheduler to 
explicitly register the subset of events that it wishes to be 
notified of according to its own requirements. 

3.3.1. Example HCCA Scheduler Module for the 
QAP: reference Scheduler 

The reference scheduler defined in [2] perfectly fits 
the contributed framework. Fig. 9 shows the main data 
structure used by reference, i.e. a circular list of descrip-
tors. Each descriptor contains information related to an 
established TS. In case of downlink TS, then the descrip-
tor also stores the corresponding transmission queue. 
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Fig. 9. Sample schedule with reference scheduler 

 
The implementation of the interface methods between 

the MAC and the HCCA Scheduler modules is quite sim-
ple in the reference case: 
• enque(). This method enqueues the packet into the 

appropriate transmission queue. 
• deque(). If this is the last descriptor in the list, then 

the QAP refrains from accessing the medium using 
HCCA until the next SI. If this the current descriptor is 
not the last, then check the direction of the associated 
TS: (i) if downlink and the transmission queue is not 
empty, send as many frames as allowed by the maxi-
mum duration granted to that TS; (ii) if uplink, poll the 
corresponding QSTA for a duration equal to the maxi-
mum TXOP granted to that TS. 

• get_next_cap(). This method just returns the re-
maining time to the next SI. 

• addTSPEC(). This method performs the admission 
control procedure described in [2]. If the traffic stream 
is admitted, it creates a new descriptor and inserts it 
into the circular list. 
The only registered event is HCCA_SUCCESS. This 

way the MAC notifies the scheduler that the last de-
queued packet has been correctly received by the recipi-
ent station, and hence it may be removed from the queue 
of the corresponding TS. 



3.3.2. Example HCCA Scheduler Module for the 
QSTAs: oneflow Scheduler 

We implemented an example scheduler (oneflow) to be 
used by QSTAs that only establish one uplink TS with the 
QAP. Outgoing packets are managed in a First-In-First-
Out manner. In this assumption, the required methods 
may be trivially implemented as follows: 
• enque(). This method adds the packet received from 

the Link Layer to the tail of the transmission queue. 
• deque(). This method returns the packet at the head 

of the transmission queue. 
• addTSPEC(). This method checks that there is not a 

previously established TS. 
• get_queue_size(). This method returns the sum 

of the size of the enqueued packets. 
The only registered event is HCCA_SUCCESS, which 

causes the head-of-line packet in the transmission queue 
to be actually dequeued. 

3.3.3. Performance Evaluation 

Our contribution to the ns2 simulation environment 
consists in the C++ source code of the Classifier, MAC, 
HCCA Scheduler and Measurement modules. The legacy 
ns2 implementation of IEEE 802.11 consists of one 
Mac802_11 class containing the complete state of the 
station at the MAC level and including: receiving/sending 
buffers, physical and MAC configuration (stored in two 
separate MIB data structures), timers to detect transmis-
sion failure, to synchronize with interframe spaces and to 
perform backoff procedures. The only access function 
supported is DCF. The MAC class inherits from the 
802.11 one, so that the stations using the MAC module 
can use both the HCCA and the DCF to access the me-
dium.  

The simulation environment consists of one QAP and 
6 QSTAs operating in IEEE 802.11b mode. The MAC 
and physical parameters are shown in Table 2. We as-
sume that the channel is error-free and that there are no 
hidden stations. RTS/CTS protection mechanism, MAC-
layer fragmentation and piggybacking features have been 
turned off during simulation. 

We show that the reference scheduler is able to pro-
vide the established traffic streams with QoS guarantees, 
even though the system is heavy loaded. Since we are not 
interested in evaluating the performance of contention-
based access, we assume that the stations with data traffic 
operate in asymptotic condition, that is the transmission 
queue is never empty. The packet size if fixed and equal 
to 1500 bytes. Three stations operate in such condition, 
with the service starting at time 420 s and terminating at 
the end of the simulation. 

 

Data rate 11 Mbps SIFS 10 µs 
Basic rate 1 Mbps PIFS 30 µs 
PHY 
header 

192 µs DIFS 50 µs 

Retry Limit 7 CWmin 31 
  CWmax 1023 

 
Table 2. MAC and physical parameters 

 
Each of the remaining QSTAs has a bi-directional 

video streaming session active during the whole simula-
tion. In the first time interval (from 20 to 820 s) the 
EDCA function is used to access the medium, while in 
the last interval (from 820 s to 1220 s) one TS is admitted 
by the QAP for each video session. The video stream is a 
medium-quality version of the MPEG4 encoded Jurassic 
Park movie [5], [6]; the average bit rate is about 270 
Kbps with a frame rate of 25 fps, corresponding to a 
frame interarrival time of 40 ms. 
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Fig. 10. Maximum delay (video flows) 

In Fig. 10 we show the maximum delay experienced 
by correctly received packets (computed over time win-
dows of 40 s for the sake of readability). In the first simu-
lation period the asymptotic stations are inactive. In this 
case, the system is lightly loaded; in fact, the offered load 
is below 1.5 Mbps, and so very few collisions occur. 
Thus, the delay of video flows is bounded by a small 
value. However, this is not also true in the second period, 
when the system is overloaded by the stations in asymp-
totic condition. During this interval, the video flows ex-
perience very high maximum delay resulting in poor per-
formance at the application layer. Furthermore, we note 
that even though the QAP has to deliver downlink video 
packets to all QSTAs, it accesses the medium with the 
same transmission probability as the latter ones. This is a 
known problem in 802.11 networks operating in infra-
structure mode. Finally, after 820 seconds the QAP ac-
cepts the admission of the uplink and downlink video 
streams of all the QSTAs. We set the negotiated Mean 
Data Rate of the TSPEC element so that the video frames 



may be served in one or two service intervals. Thus, dur-
ing the third simulation period the maximum delay of 
video packets is bounded by 80 ms (2 × MSI = 2 × 40 
ms). 
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Fig. 11. Throughput and collision probability 

We also show that servicing video flows with HCCA 
does not degrade the performance of contention-based 
traffic. In fact, the throughput that can be reached by a 
tagged station in asymptotic condition is slightly higher in 
the third simulation period (Fig. 11). This counterintuitive 
behavior may be explained by the fact that the collision 
probability when using a random backoff access proce-
dure depends on the number of contending stations: this 
number is higher when all the stations use the EDCA 
function. As soon as the HCCA is used, the collision 
probability of data packets drops of about 7%, leading to 
a better efficiency in the medium access. This over-
compensates the effect of reduced bandwidth due to 
transmission of CAPs. Finally, we note that the collision 
probability of the downlink video packets is higher than 
that of the uplink ones, which confirms the asymmetry of 
the 802.11 infrastructure mode. 

4. Conclusions 

In this paper we presented a software framework for 
simulating the IEEE 802.11e. In particular, we designed 
the following modules to model the MAC layer of an 
802.11e system: Classifier, MAC, HCCA Scheduler. A set 
of MAC-related events, driving the MAC module finite 
state machine on both QAP and QSTA, has been devised. 
These events are listened by the HCCA Scheduler, so that 
any scheduling policy can be devised and fit into the pro-
posed architecture. As an example, we implemented an 
instance of HCCA Scheduler, namely the reference 
scheduler described in the 802.11e draft. Finally, we de-
scribed a working implementation of the presented 
framework in the Network Simulator version 2 and tested 
it simulating a scenario involving the transmission of a 

mix of best-effort and delay-sensitive traffic. These pre-
liminary results show that the reference scheduler is able 
to provide the simulated delay-sensitive streams with QoS 
guarantees, without degrading the performance of best-
effort traffic. 
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