
A Software Architecture for Simulating IEEE 802.11e HCCA

Claudio Cicconetti, Luciano Lenzini, Enzo Mingozzi, Giovanni Stea

Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
Via Diotisalvi 2, 56122 Pisa, Italy

E-mail: {c.cicconetti,l.lenzini,e.mingozzi,g.stea}@iet.unipi.it

Abstract

We present a software framework for simulating the

HCF Controlled Channel Access (HCCA) in an IEEE
802.11e system. The proposed approach allows for flexi-
ble integration of different scheduling algorithms with the
MAC. The 802.11e system consists of three modules:
Classifier, HCCA Scheduler, MAC. We define a commu-
nication interface exported by the MAC module to the
HCCA Scheduler. A Scheduler module implementing the
reference scheduler defined in the draft IEEE 802.11e
document is also described. The software framework re-
ported in this paper has been implemented using the Net-
work Simulator 2 platform. A preliminary performance
analysis of the reference scheduler is also reported.

1. Introduction

In recent years Wireless Local Area Networks have
become very popular due to the increasing interest of
residential and office customers in ubiquitous services.
The IEEE 802.11 protocol [1] has established as the
world-wide standard in wireless indoor and outdoor
LANs. On the other hand, the high level of performance
provided by the wired networks is driving the users to-
ward an emerging set of applications with Quality of Ser-
vice requirements, such as phone or videoconference over
IP networks. In order to support applications with QoS
requirements the upcoming IEEE 802.11e amendment [2]
provides the IEEE 802.11 MAC with two additional ac-
cess mechanisms: Enhanced Distributed Channel Access
(EDCA), with distributed control which enables priori-
tized channel access, and HCF Coordination Channel
Access (HCCA), which instead requires centralized
scheduling, and allows the applications to negotiate pa-
rameterized service guarantees. The interested reader may
refer to [3] for a full description of the 802.11e enhance-
ments to support QoS. In this paper, we present a soft-
ware framework for simulating HCCA. The proposed
framework models the 802.11e system by means of three
different modules, namely Classifier, HCCA Scheduler,
MAC. The MAC module exports an interface to the
HCCA Scheduler module. Thus, different scheduling al-
gorithms can be easily integrated. As an example, we

implemented the reference scheduler defined in the
802.11e draft specification [2]. The above software
framework has been implemented using the Network
Simulator 2 (ns2, [4]). A preliminary performance as-
sessment of the reference scheduler is also reported,
showing the isolation provided to delay-sensitive flows in
the case of heavy-loaded system.

The rest of the paper is organized as follows. In Section
2 we describe the HCCA access function specified in [2].
Section 3 contains the main contribution of this paper,
which is the software framework for simulating the 802.11e
HCCA. In order to validate the framework that has been
devised in Section 2, in Section 4 we discuss some prelimi-
nary results that have been obtained with a sample scenario.
Finally, we draw conclusions in Section 5.

2. HCF Controlled Channel Access Descrip-
tion

The HCCA is a centralized access mechanism con-
trolled by the Hybrid Coordinator (HC), which resides
into the QoS-enabled Access Point (QAP). Each QoS-
enabled station (QSTA) may have up to eight established
Traffic Streams (TS); a TS is characterized by a Traffic
Specification (TSPEC) which is negotiated between the
QSTA and the QAP. Mandatory fields of the TSPEC in-
clude: Mean Data Rate, Delay Bound, Nominal SDU
Size. For all established streams the QAP is required to
provide a service that is compliant with the negotiated
TSPEC under controlled operating conditions. 802.11e
compliant stations must be able to process the additional
frames reported in Table 1.

QoS frames QoS piggybacked frames
QoS Data QoS Data + CF-Ack
QoS CF-Ack QoS Data + CF-Poll
QoS Null QoS Null + CF-Ack
QoS CF-Poll QoS Data + CF-Poll + CF-

Ack

Table 1. QoS frames

The QAP enforces the negotiated QoS guarantees by
scheduling Controlled Access Phases (CAPs). A CAP is a
time interval during which the QAP may either transmit

MSDUs of established downlink TSs or poll one or more
QSTAs by specifying the maximum duration of the trans-
mission opportunity (TXOP): a QSTA is never allowed to
exceed the TXOP limit imposed by the QAP, including
interframe spaces and acknowledgments. If the traffic
stream of a polled QSTA is not backlogged, then the
QSTA responds with a Null frame. Fig. 1 shows a sample
CAP during which the QAP transmits two frames and
polls the QSTA, which in turn transmits two frames. It is
worth noting that the scheduling of CAPs, i.e. of HCCA
traffic streams, also affects the overall capacity left to
contention-based traffic, i.e. EDCA and DCF.
• The 802.11e provides three acknowledgment modes:

direct acknowledgment: each Data frame is acknowl-
edged by the recipient station immediately after it has
been correctly received. The recipient station may pig-
gyback the acknowledgment to an outgoing frame di-
rected to the sending station in order to reduce the
MAC overhead (see new frame types in Table 1). A
further optimization consists in using of the QAck op-
tional feature. If both the QAP and the sending QSTA
are QAck-enabled, then the QAP may piggyback an
acknowledgment into a frame directed to a different
QSTA than the sending one

• no acknowledgment: data frames are never acknowl-
edged by the recipient station

• block acknowledgment: several acknowledgments are
aggregated into one frame. The 802.11e does not
specify a standard procedure that the sending station
should apply when fragmenting and concatenating the
MSDUs in a burst of frames. Since, to the best of our
knowledge, there is no previous work on this particular
issue, we leave this optional mode for future investiga-
tion.

Fig. 1. Example of HCCA frame exchange se-

quence

The IEEE 802.11e standard does not define a manda-
tory HCCA scheduling algorithm; however, a reference
scheduler is specified and reported therein for informa-
tional purposes. The reference scheduler requires that
flows specify the following TSPEC parameters: Mean
Data Rate, Nominal SDU Size, Maximum SDU Size and
Maximum Service Interval (MSI). The MSI of a given
flow is the maximum time that elapses from the start of
two subsequent service periods to that flow. The refer-
ence scheduler produces TDM-like schedules: each TS is
periodically allocated a fixed amount of capacity. The
period is called Service Interval (SI) and it is the same for

all traffic streams. It is computed as the smallest admitted
MSI. The TXOP duration is then set to the time required
to transmit the packets of Nominal SDU Size that arrive
at the negotiated Mean Data Rate during the SI; the
TXOP is rounded up to contain an integer number of
Nominal SDU Size. In order to avoid head of line block-
ing, the actual TXOP value is the maximum between the
value obtained with the above procedure and the time to
transmit a packet with Maximum SDU Size. A sample
schedule showing three admitted flows (i, j and k) is re-
ported in Fig. 2.

TXOP
i

TXOP
j

TXOP
k

TXOP
i

TXOP
j

TXOP
k

EDCA
DCF

SI

HCCA
Fig. 2. Sample schedule with the reference scheduler

3. Software Architecture

The simulation framework is shown in Fig. 3 and con-
sists of the following modules: Classifier, MAC, HCCA
Scheduler. These are described later in this section and
are functional to the simulation of 802.11e HCCA.

The Link Layer and Measurement modules are exter-
nal to the 802.11e and depend on the simulation environ-
ment where the proposed framework is implemented. The
former module is required to connect the MAC to upper
layers. Performance is evaluated through the use of the
Measurement module.

Fig. 3. Software modules

3.1. Classifier Module

The function of the Classifier module is to appropri-
ately tag packets that belong to established traffic streams
with a Traffic Identifier (TID). Only packets from the
Link Layer to the MAC are tagged, because uplink pack-
ets are just passed to upper layers without any schedul-
ing/differentiation treatment.

Each station runs a separate instance of the Classifier
module, which may be further specialized in the follow-
ing two types:
• Classifier for a QSTA: the tagging policy is based on a

terminal-specific set of rules
• Classifier for the QAP: the tagging policy is based on

the above set of rules and on the identifier of the desti-
nation QSTA

The MAC and HCCA Scheduler modules are able to re-
trieve the TID of any packet.

3.2. MAC module

In this subsection, we describe the main data struc-
tures, functions and events of the MAC module.

There are three piggybacking policies, which may be
set on a per-station basis:
• no piggybacking: the only frames used are those listed

in the left column of Table 1 under “QoS frames”
• piggybacking on: the MAC piggybacks an acknowl-

edgment on outgoing Data frames directed to the same
station only

• QAck: the optional QAck feature is turned on. There-
fore, the piggybacking is used whenever it is possible.
We devised the following set of events that drive the

MAC state machine:
• HCCA_HAS_CONTROL. This event notifies the station

that it has control of the medium. A QSTA generates
this event when it is polled from the QAP. The QAP
generates this event when it senses the medium idle for
a period larger than PIFS or when it receives the last
frame from a QSTA during a TXOP burst.

• HCCA_LOST_CONTROL. This event notifies the sta-
tion that it has not the control of the medium anymore.
It is generated when the HCCA Scheduler does have
any packets to send. Also, the QAP generates this
event when a QSTA correctly responds to a polling
frame and a QSTA generates this event when the QAP

correctly acknowledges the last frame of the TXOP
burst.

• HCCA_DATA_RECV. This event notifies the station
that a frame carrying data addressed to this station has
been correctly received.

• HCCA_RECV. This event notifies the station that a
frame of any type (acknowledgment, Data and poll
frames) addressed to this station has been correctly re-
ceived.

• HCCA_SUCCESS. This event notifies the station that a
downlink Data frame has been correctly acknowledged
by the receiving station.

• HCCA_TRANSMIT. This event notifies the station that
a downlink frame has been dispatched.

• HCCA_TX_END. This event is generated by the QAP
when the TXOP granted to a QSTA expires

• HCCA_CAP_HAND. This event is generated by the
QAP when it is time to start a new CAP, according to
the HCCA Scheduler requirements.
Fig. 4 shows the above events in a sample frame ex-

change sequence: the transmission of two uplink Data
frames, followed by the transmission of a downlink Data
frame, assuming that neither collision nor frame corrup-
tion due to bad channel state occur.

In Fig. 5 the finite state machines of the QAP and
QSTA MAC modules are depicted. After the initialization
of the HCCA subsystem (HCCA_START event), a station
alternates between two main states (HAS_CONTROL
and LOST_CONTROL, shown in more detail in Fig. 6
and Fig. 7). The only difference between the QAP and the
QSTA is that the former may access the medium at any
moment, provided that ongoing frame exchanges are not
interrupted. Instead, the only way for a QSTA to access
the medium using HCCA is responding to a poll from the
QAP. The MAC is notified by the HCCA Scheduler of the
start time of the next CAP and uses a dedicated timer
(mhCap_) to this purpose.

Fig. 4. Events during a sample frame exchange sequence

Fig. 5. State chart of the QAP and QSTA MAC modules

Fig. 6. State chart of the MAC module (HAS_CONTROL case)

When the HAS_CONTROL block is entered (Fig. 6)

the station waits for the medium to become idle. Then the
MAC requests the head-of-line packet to the HCCA
Scheduler. If the HCCA is currently unbacklogged, then
the station immediately loses the control of the medium.
Otherwise, the frame is sent to the physical layer. If there
is a pending acknowledgment the station may piggyback
it to the outgoing frame, provided it is allowed by the
sending and receiving capabilities. The outgoing frame
may or may not require an explicit acknowledgment. In
the first case, the cycle restarts immediately. In the sec-
ond case, the station waits for the acknowledgment after
transmitting the frame, and:

• if an acknowledgment is correctly received after a
SIFS the station returns to its initial state

• if the station is the QAP and the medium is idle for a
period greater than or equal to PIFS, then it claims the
control of the medium, so that contention-based traffic
cannot use time slots reserved to HCCA during a re-
covery phase

• if the station is the QAP and there is a response to the
last poll frame, then the station loses the control of the
medium

• finally, if the station is a QSTA and the last frame in
the current TXOP burst has been acknowledged, then
the station loses the control of the medium

Fig. 7. State chart of the MAC module (LOST_CONTROL case)

QSTA

BUSY

DEQUE
do/ dequeue()
do/ get_queue_size()

IDLE

H
C

C
A

_
H

A
S

_
C

O
N

T
R

O
L

H
C

C
A

_
L

O
S

T
_

C
O

N
T

R
O

L

HCCA_START

HCCA_STOP

a
d

d
T

S
P

E
C

(
)

e
n

q
u

e
(

)

ACTIVE

QAP

BUSY

DEQUE
do/ dequeue()

NEXT CAP

a
d

d
T

S
P

E
C

(
)

e
n

q
u

e
(

)

IDLE

H
C

C
A

_
H

A
S

_
C

O
N

T
R

O
L

HCCA_START

HCCA_STOP

H
C

C
A

_
L

O
S

T
_

C
O

N
T

R
O

L

do/ get_next_cap()

ACTIVE

Fig. 8. State chart of the QAP and QSTA HCCA Scheduler modules

When the LOST_CONTROL block (Fig. 7) is entered

the station continuously listens to the medium. Four
events may occur:
• an acknowledgment to a previously transmitted Data

frame is received. In this case the station immediately
returns to the initial state

• a Data frame that requires direct acknowledgment is
received, in which case the acknowledgement is trans-
mitted after a SIFS duration

• if the station is a QSTA it may receive a poll frame
from the QAP. In this case the station enters the
HCCA_HAS_CONTROL block

• finally, if the station is the QAP it may receive the last
frame of a TXOP burst. In this case the station enters
the HCCA_HAS_CONTROL block.

3.3. HCCA Scheduler Module

The main component of the HCCA simulator architec-
ture is the HCCA Scheduler module. Unlike those operat-
ing at the network layer, schedulers operating at the MAC
layer heavily depend on the underlying layer-2 and physi-
cal layers. Thus, we have defined an interface which is
general enough to adapt any sort of scheduling algorithm
to the specified framework. The interface is shown in Fig.

8, which reports the block diagrams of the QAP and
QSTA HCCA Scheduler modules.

When in active state (i.e., when the user turns the
simulation of HCCA on) both the QAP and the QSTA
schedules alternates between two main states:
• IDLE. This is a passive state: enqueued packets from

downlink TSs are not transmitted using HCCA and no
polls are generated (QAP only). The only actions al-
lowed in the current state are: (i) enqueue a new
downlink packet of an established TS (ii) add a new
TS to the set of established TSs

• BUSY. This is an active state. All the allowed action in
the previous state may take place in the current one.
Moreover, downlink packets that belong to established
TSs may be transmitted or the QAP may poll QSTAs
with established TSs. Note that the QSTAs reach this
state only on receipt of a poll from the QAP, whereas
the QAP itself is always in this state except during the
transmission opportunities that it granted to the
QSTAs.
The following functions are specific to the scheduling

algorithm that is used at the QAP and QSTAs:
• enque(). This function is called by the Link Layer

whenever a new downlink packet has been received
from upper layers. The incoming packet should be en-
queued in the scheduler-specific data structures of the
HCCA Scheduler module. There are cases in which the
scheduler may drop packets, for example if the buffer
allocated to downlink packets is finite or according to
time-to-live packet policies.

• deque(). This function is called by the MAC when
the station has the control of the medium. Its effects
depend on the scheduling algorithm and the current
status of the scheduler. The allowed actions include: (i)
the scheduler passes to the MAC a downlink packet to
be transmitted (ii) the scheduler communicates to the
MAC that a given QSTA should be polled with a
specified TXOP duration (iii) a poll to itself should be
sent (iv) no action is to performed. Of course, actions
(ii) and (iii) are only performed by the QAP scheduler.

• get_next_cap(). [QAP only] This function is
called by the MAC when the QAP scheduler loses the
control of the medium. It is used by the scheduler to
notify the MAC of the start of the next CAP. Until that
time, the HCCA function of the QAP is idle.

• addTSPEC(). [QAP only] This function is called by
the MAC when the admission of a new traffic stream is
requested

• get_queue_size(). [QSTA only] This function is
called by the MAC before transmitting a Data frame. It
returns the queue size of a specified TS. This informa-
tion is piggybacked to all Data frames generated by a
QSTA that belong to an established TS.
Since the scheduler procedure may require some status

information, we made available the full set of events de-

scribed in the previous section to the HCCA Scheduler
module. However, it is quite unlikely that any scheduler
will require all event types. Thus, we allow a scheduler to
explicitly register the subset of events that it wishes to be
notified of according to its own requirements.

3.3.1. Example HCCA Scheduler Module for the
QAP: reference Scheduler

The reference scheduler defined in [2] perfectly fits
the contributed framework. Fig. 9 shows the main data
structure used by reference, i.e. a circular list of descrip-
tors. Each descriptor contains information related to an
established TS. In case of downlink TS, then the descrip-
tor also stores the corresponding transmission queue.

D1 Pi

Di

QAP

QSTA i

Pj

N

D3

QSTA j

downlink
QSTA1 TID

uplink
QSTA i TID

?

downlink
QSTA1 TID

uplink
QSTA i TID

?

downlink
QSTA1 TID

traffic stream
unbacklogged

traffic stream
unbacklogged

N Null framePn Poll to QSTA nDn Data to QSTA n
Fig. 9. Sample schedule with reference scheduler

The implementation of the interface methods between

the MAC and the HCCA Scheduler modules is quite sim-
ple in the reference case:
• enque(). This method enqueues the packet into the

appropriate transmission queue.
• deque(). If this is the last descriptor in the list, then

the QAP refrains from accessing the medium using
HCCA until the next SI. If this the current descriptor is
not the last, then check the direction of the associated
TS: (i) if downlink and the transmission queue is not
empty, send as many frames as allowed by the maxi-
mum duration granted to that TS; (ii) if uplink, poll the
corresponding QSTA for a duration equal to the maxi-
mum TXOP granted to that TS.

• get_next_cap(). This method just returns the re-
maining time to the next SI.

• addTSPEC(). This method performs the admission
control procedure described in [2]. If the traffic stream
is admitted, it creates a new descriptor and inserts it
into the circular list.
The only registered event is HCCA_SUCCESS. This

way the MAC notifies the scheduler that the last de-
queued packet has been correctly received by the recipi-
ent station, and hence it may be removed from the queue
of the corresponding TS.

3.3.2. Example HCCA Scheduler Module for the
QSTAs: oneflow Scheduler

We implemented an example scheduler (oneflow) to be
used by QSTAs that only establish one uplink TS with the
QAP. Outgoing packets are managed in a First-In-First-
Out manner. In this assumption, the required methods
may be trivially implemented as follows:
• enque(). This method adds the packet received from

the Link Layer to the tail of the transmission queue.
• deque(). This method returns the packet at the head

of the transmission queue.
• addTSPEC(). This method checks that there is not a

previously established TS.
• get_queue_size(). This method returns the sum

of the size of the enqueued packets.
The only registered event is HCCA_SUCCESS, which

causes the head-of-line packet in the transmission queue
to be actually dequeued.

3.3.3. Performance Evaluation

Our contribution to the ns2 simulation environment
consists in the C++ source code of the Classifier, MAC,
HCCA Scheduler and Measurement modules. The legacy
ns2 implementation of IEEE 802.11 consists of one
Mac802_11 class containing the complete state of the
station at the MAC level and including: receiving/sending
buffers, physical and MAC configuration (stored in two
separate MIB data structures), timers to detect transmis-
sion failure, to synchronize with interframe spaces and to
perform backoff procedures. The only access function
supported is DCF. The MAC class inherits from the
802.11 one, so that the stations using the MAC module
can use both the HCCA and the DCF to access the me-
dium.

The simulation environment consists of one QAP and
6 QSTAs operating in IEEE 802.11b mode. The MAC
and physical parameters are shown in Table 2. We as-
sume that the channel is error-free and that there are no
hidden stations. RTS/CTS protection mechanism, MAC-
layer fragmentation and piggybacking features have been
turned off during simulation.

We show that the reference scheduler is able to pro-
vide the established traffic streams with QoS guarantees,
even though the system is heavy loaded. Since we are not
interested in evaluating the performance of contention-
based access, we assume that the stations with data traffic
operate in asymptotic condition, that is the transmission
queue is never empty. The packet size if fixed and equal
to 1500 bytes. Three stations operate in such condition,
with the service starting at time 420 s and terminating at
the end of the simulation.

Data rate 11 Mbps SIFS 10 µs
Basic rate 1 Mbps PIFS 30 µs
PHY
header

192 µs DIFS 50 µs

Retry Limit 7 CWmin 31
 CWmax 1023

Table 2. MAC and physical parameters

Each of the remaining QSTAs has a bi-directional

video streaming session active during the whole simula-
tion. In the first time interval (from 20 to 820 s) the
EDCA function is used to access the medium, while in
the last interval (from 820 s to 1220 s) one TS is admitted
by the QAP for each video session. The video stream is a
medium-quality version of the MPEG4 encoded Jurassic
Park movie [5], [6]; the average bit rate is about 270
Kbps with a frame rate of 25 fps, corresponding to a
frame interarrival time of 40 ms.

200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

HCCA
data+video

EDCA
data+video

M
ax

im
um

 d
el

ay
 (s

)

Time (s)

 uplink
 downlink

EDCA
video only

Maximum delay of video flows

Fig. 10. Maximum delay (video flows)

In Fig. 10 we show the maximum delay experienced
by correctly received packets (computed over time win-
dows of 40 s for the sake of readability). In the first simu-
lation period the asymptotic stations are inactive. In this
case, the system is lightly loaded; in fact, the offered load
is below 1.5 Mbps, and so very few collisions occur.
Thus, the delay of video flows is bounded by a small
value. However, this is not also true in the second period,
when the system is overloaded by the stations in asymp-
totic condition. During this interval, the video flows ex-
perience very high maximum delay resulting in poor per-
formance at the application layer. Furthermore, we note
that even though the QAP has to deliver downlink video
packets to all QSTAs, it accesses the medium with the
same transmission probability as the latter ones. This is a
known problem in 802.11 networks operating in infra-
structure mode. Finally, after 820 seconds the QAP ac-
cepts the admission of the uplink and downlink video
streams of all the QSTAs. We set the negotiated Mean
Data Rate of the TSPEC element so that the video frames

may be served in one or two service intervals. Thus, dur-
ing the third simulation period the maximum delay of
video packets is bounded by 80 ms (2 × MSI = 2 × 40
ms).

400 600 800 1000 1200
0

200000

400000

600000

800000

1000000

1200000

1400000

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Th
ro

ug
hp

ut
 (b

ps
)

Time (s)

 data (throughput)

 C
ol

lis
io

n
pr

ob
ab

ili
ty

 (%
)

 data (collisions)
 video downlink
 video uplink

Fig. 11. Throughput and collision probability

We also show that servicing video flows with HCCA
does not degrade the performance of contention-based
traffic. In fact, the throughput that can be reached by a
tagged station in asymptotic condition is slightly higher in
the third simulation period (Fig. 11). This counterintuitive
behavior may be explained by the fact that the collision
probability when using a random backoff access proce-
dure depends on the number of contending stations: this
number is higher when all the stations use the EDCA
function. As soon as the HCCA is used, the collision
probability of data packets drops of about 7%, leading to
a better efficiency in the medium access. This over-
compensates the effect of reduced bandwidth due to
transmission of CAPs. Finally, we note that the collision
probability of the downlink video packets is higher than
that of the uplink ones, which confirms the asymmetry of
the 802.11 infrastructure mode.

4. Conclusions

In this paper we presented a software framework for
simulating the IEEE 802.11e. In particular, we designed
the following modules to model the MAC layer of an
802.11e system: Classifier, MAC, HCCA Scheduler. A set
of MAC-related events, driving the MAC module finite
state machine on both QAP and QSTA, has been devised.
These events are listened by the HCCA Scheduler, so that
any scheduling policy can be devised and fit into the pro-
posed architecture. As an example, we implemented an
instance of HCCA Scheduler, namely the reference
scheduler described in the 802.11e draft. Finally, we de-
scribed a working implementation of the presented
framework in the Network Simulator version 2 and tested
it simulating a scenario involving the transmission of a

mix of best-effort and delay-sensitive traffic. These pre-
liminary results show that the reference scheduler is able
to provide the simulated delay-sensitive streams with QoS
guarantees, without degrading the performance of best-
effort traffic.

Acknowledgements

This work was partially funded by the European Un-
ion 6th Framework Programme under contract IST FP6
IP 004503 EuQoS Integrated Project. The authors would
like to thank Federico Stentella for his substantial contri-
bution to the ns2 implementation.

References

[1] IEEE Computer Society LAN MAN Standards Committee.
IEEE 802.11: Wireless LAN Medium Access Control and
Physical Layer Specifications, August 1999.

[2] IEEE Computer Society LAN MAN Standards Committee.
IEEE 802.11: Wireless LAN Medium Access Control and
Physical Layer Specifications. Medium Access Control
(MAC) Quality of Service (QoS) Enhancements, Draft
D??, July 2004

[3] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and L.
Stibor. IEEE 802.11e wireless LAN for quality of service.
In EW2002 - Proc. European Wireless, volume 1, pages
32–39, February 2002.

[4] http://www.isi.edu/nsnam/ns/
[5] Frank H.P. Fitzek, Martin Reisslein. MPEG-4 and H.263

Video Traces for Network Performance Evaluation. IEEE
Network, Vol. 15, No. 6, pages 40-54, Novem-
ber/December 2001.

[6] http://www-tkn.ee.tu-berlin.de/research/trace/trace.html

http://www.isi.edu/nsnam/ns/

	Introduction
	HCF Controlled Channel Access Description
	Software Architecture
	Classifier Module
	MAC module
	HCCA Scheduler Module
	Example HCCA Scheduler Module for the QAP: reference Schedul
	Example HCCA Scheduler Module for the QSTAs: oneflow Schedul
	Performance Evaluation

	Conclusions
	Acknowledgements
	References

